Selective inhibition of fibroblast activation protein protease based on dipeptide substrate specificity.

نویسندگان

  • Conrad Yap Edosada
  • Clifford Quan
  • Christian Wiesmann
  • Thuy Tran
  • Dan Sutherlin
  • Mark Reynolds
  • J Michael Elliott
  • Helga Raab
  • Wayne Fairbrother
  • Beni B Wolf
چکیده

Fibroblast activation protein (FAP) is a transmembrane serine peptidase that belongs to the prolyl peptidase family. FAP has been implicated in cancer; however, its specific role remains elusive because inhibitors that distinguish FAP from other prolyl peptidases like dipeptidyl peptidase-4 (DPP-4) have not been developed. To identify peptide motifs for FAP-selective inhibitor design, we used P(2)-Pro(1) and acetyl (Ac)-P(2)-Pro(1) dipeptide substrate libraries, where P(2) was varied and substrate hydrolysis occurs between Pro(1) and a fluorescent leaving group. With the P(2)-Pro(1) library, FAP preferred Ile, Pro, or Arg at the P(2) residue; however, DPP-4 showed broad reactivity against this library, precluding selectivity. By contrast, with the Ac-P(2)-Pro(1) library, FAP cleaved only Ac-Gly-Pro, whereas DPP-4 showed little reactivity with all substrates. FAP also cleaved formyl-, benzyloxycarbonyl-, biotinyl-, and peptidyl-Gly-Pro substrates, which DPP-4 cleaved poorly, suggesting an N-acyl-Gly-Pro motif for inhibitor design. Therefore, we synthesized and tested the compound Ac-Gly-prolineboronic acid, which inhibited FAP with a K(i) of 23 +/- 3 nm. This was approximately 9- to approximately 5400-fold lower than the K(i) values for other prolyl peptidases, including DPP-4, DPP-7, DPP-8, DPP-9, prolyl oligopeptidase, and acylpeptide hydrolase. These results identify Ac-Gly-BoroPro as a FAP-selective inhibitor and suggest that N-acyl-Gly-Pro-based inhibitors will allow testing of FAP as a therapeutic target.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Purification, identification and characterisation of seprase from bovine serum.

The study and identification for the first time of a soluble form of a seprase activity from bovine serum is presented. To date, this activity has only been reported to be an integral membrane protease but has been known to shed from its membrane. The activity was purified 30,197-fold to homogeneity, using a combination of column chromatographies, from bovine serum. Inhibition by DFP, resulting...

متن کامل

Structural and kinetic analysis of the substrate specificity of human fibroblast activation protein alpha.

Fibroblast activation protein alpha (FAPalpha) is highly expressed in epithelial cancers and has been implicated in extracellular matrix remodeling, tumor growth, and metastasis. We present the first high resolution structure for the apoenzyme as well as kinetic data toward small dipeptide substrates. FAPalpha exhibits a dipeptidyl peptidase IV (DPPIV)-like fold, featuring an alpha/beta-hydrola...

متن کامل

Activation of CPP32-like Proteases Is Not Sufficient to Trigger Apoptosis: Inhibition of Apoptosis by Agents that Suppress Activation of AP24, but Not CPP32-like Activity

The 24-kD apoptotic protease (AP24) is a serine protease that is activated during apoptosis and has the capacity to activate internucleosomal DNA fragmentation in isolated nuclei. This study examined the following: (a) the functional relationship between AP24 and the CPP32-like proteases of the caspase family; and (b) whether activation of CPP32-like proteases is sufficient to commit irreversib...

متن کامل

Design of new potent HTLV-1 protease inhibitors: in silico study

HTLV-1 and HIV-1 are two major causes for severe T-cell leukemia disease and acquired immune deficiency syndrome (AIDS). HTLV-1 protease, a member of aspartic acid protease family, plays important roles in maturation during virus replication cycle. The impairment of these proteases results in uninfectious HTLV-1virions.Similar to HIV-1protease deliberate mutations that confer drug resistance on...

متن کامل

Bivalency as a principle for proteasome inhibition.

The proteasome, a multicatalytic protease, is known to degrade unfolded polypeptides with low specificity in substrate selection and cleavage pattern. This lack of well-defined substrate specificities makes the design of peptide-based highly selective inhibitors extremely difficult. However, the x-ray structure of the proteasome from Saccharomyces cerevisiae reveals a unique topography of the s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 281 11  شماره 

صفحات  -

تاریخ انتشار 2006